Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Redox Biol ; 72: 103138, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38581858

RESUMO

The oxytosis/ferroptosis regulated cell death pathway is an emerging field of research owing to its pathophysiological relevance to a wide range of neurological disorders, including Alzheimer's and Parkinson's diseases and traumatic brain injury. Developing novel neurotherapeutics to inhibit oxytosis/ferroptosis offers exciting opportunities for the treatment of these and other neurological diseases. Previously, we discovered cannabinol (CBN) as a unique, potent inhibitor of oxytosis/ferroptosis by targeting mitochondria and modulating their function in neuronal cells. To further elucidate which key pharmacophores and chemical space are essential to the beneficial effects of CBN, we herein introduce a fragment-based drug discovery strategy in conjunction with cell-based phenotypic screens using oxytosis/ferroptosis to determine the structure-activity relationship of CBN. The resulting information led to the development of four new CBN analogs, CP1-CP4, that not only preserve the sub-micromolar potency of neuroprotection and mitochondria-modulating activities seen with CBN in neuronal cell models but also have better druglike properties. Moreover, compared to CBN, the analog CP1 shows improved in vivo efficacy in the Drosophila model of mild traumatic brain injury. Together these studies identify the key molecular scaffolds of cannabinoids that contribute to neuroprotection against oxytosis/ferroptosis. They also highlight the advantageous approach of combining in vitro cell-based assays and rapid in vivo studies using Drosophila models for evaluating new therapeutic compounds.

2.
Radiologie (Heidelb) ; 64(4): 254-260, 2024 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-38519603

RESUMO

Meniscus tears are classified as horizontal, longitudinal, radial, and complex tears. Flap tears are a specific form in which a portion of the meniscus is displaced from a horizontal or longitudinal tear. The question of whether it is possible to preserve the meniscus by meniscus repair is of crucial therapeutic importance. It is therefore important to specify not only the configuration of the tear but also its extent and location as precisely as possible. Cooper's zonal classification should also be used for this purpose. Lesions of the meniscus roots are of high clinical relevance. On the posterior horn of the medial meniscus, root lesions are usually degenerative; on the posterior horn of the lateral meniscus, they are often traumatic. It is important to familiarize oneself with the normal appearance and anatomical location of the meniscal roots. Ramp lesions have received particular attention in recent years, especially in patients with anterior cruciate ligament tears. Therefore, particularly the integrity of the attachment of the posterior horn of the medial meniscus to the tibial plateau must be analyzed. If the meniscotibial ligament tears along its course or at the insertion to the meniscus or if it avulses with a meniscus fragment, this is a ramp lesion.


Assuntos
Lesões do Ligamento Cruzado Anterior , Artroscopia , Humanos , Meniscos Tibiais/cirurgia , Articulação do Joelho , Lesões do Ligamento Cruzado Anterior/cirurgia , Tíbia
3.
PLoS Pathog ; 19(5): e1011368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155700

RESUMO

The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Repetição de Anquirina Projetadas , Helicobacter pylori/metabolismo , Infecções por Helicobacter/microbiologia
4.
Cell Chem Biol ; 30(5): 499-512.e5, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37100053

RESUMO

Respiratory complex I is a multicomponent enzyme conserved between eukaryotic cells and many bacteria, which couples oxidation of electron donors and quinone reduction with proton pumping. Here, we report that protein transport via the Cag type IV secretion system, a major virulence factor of the Gram-negative bacterial pathogen Helicobacter pylori, is efficiently impeded by respiratory inhibition. Mitochondrial complex I inhibitors, including well-established insecticidal compounds, selectively kill H. pylori, while other Gram-negative or Gram-positive bacteria, such as the close relative Campylobacter jejuni or representative gut microbiota species, are not affected. Using a combination of different phenotypic assays, selection of resistance-inducing mutations, and molecular modeling approaches, we demonstrate that the unique composition of the H. pylori complex I quinone-binding pocket is the basis for this hypersensitivity. Comprehensive targeted mutagenesis and compound optimization studies highlight the potential to develop complex I inhibitors as narrow-spectrum antimicrobial agents against this pathogen.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mutagênese , Mutação , Oxirredução , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Biomolecules ; 12(12)2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36551274

RESUMO

A de novo assembly algorithm is provided to propose the assembly of bitopic transmembrane domains (TMDs) of membrane proteins. The algorithm is probed using, in particular, viral channel forming proteins (VCPs) such as M2 of influenza A virus, E protein of severe acute respiratory syndrome corona virus (SARS-CoV), 6K of Chikungunya virus (CHIKV), SH of human respiratory syncytial virus (hRSV), and Vpu of human immunodeficiency virus type 2 (HIV-2). The generation of the structures is based on screening a 7-dimensional space. Assembly of the TMDs can be achieved either by simultaneously docking the individual TMDs or via a sequential docking. Scoring based on estimated binding energies (EBEs) of the oligomeric structures is obtained by the tilt to decipher the handedness of the bundles. The bundles match especially well for all-atom models of M2 referring to an experimentally reported tetrameric bundle. Docking of helical poly-peptides to experimental structures of M2 and E protein identifies improving EBEs for positively charged (K,R,H) and aromatic amino acids (F,Y,W). Data are improved when using polypeptides for which the coordinates of the amino acids are adapted to the Cα coordinates of the respective experimentally derived structures of the TMDs of the target proteins.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos , Proteínas Viroporinas , Humanos , Avaliação Pré-Clínica de Medicamentos , Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Viroporinas/química , Domínios Proteicos
6.
Viruses ; 14(4)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35458429

RESUMO

Focusing on the transmembrane domains (TMDs) of viral fusion and channel-forming proteins (VCPs), experimentally available and newly generated peptides in an ideal conformation of the S and E proteins of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and SARS-CoV, gp41 and Vpu, both of human immunodeficiency virus type 1 (HIV-1), haemagglutinin and M2 of influenza A, as well as gB of herpes simplex virus (HSV), are embedded in a fully hydrated lipid bilayer and used in multi-nanosecond molecular dynamics simulations. It is aimed to identify differences in the dynamics of the individual TMDs of the two types of viral membrane proteins. The assumption is made that the dynamics of the individual TMDs are decoupled from their extra-membrane domains, and that the mechanics of the TMDs are distinct from each other due to the different mechanism of function of the two types of proteins. The diffusivity coefficient (DC) of the translational and rotational diffusion is decreased in the oligomeric state of the TMDs compared to those values when calculated from simulations in their monomeric state. When comparing the calculations for two different lengths of the TMD, a longer full peptide and a shorter purely TMD stretch, (i) the difference of the calculated DCs begins to level out when the difference exceeds approximately 15 amino acids per peptide chain, and (ii) the channel protein rotational DC is the most affected diffusion parameter. The rotational dynamics of the individual amino acids within the middle section of the TMDs of the fusion peptides remain high upon oligomerization, but decrease for the channel peptides, with an increasing number of monomers forming the oligomeric state, suggesting an entropic penalty on oligomerization for the latter.


Assuntos
COVID-19 , Canais Iônicos , Simulação de Dinâmica Molecular , Proteínas Virais de Fusão , Aminoácidos , Humanos , Canais Iônicos/ultraestrutura , Peptídeos/química , SARS-CoV-2 , Proteínas Virais de Fusão/ultraestrutura
7.
Biomacromolecules ; 23(3): 1148-1157, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35225593

RESUMO

Cellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques. As treatments, drying at elevated temperature, swelling, and swelling followed by drying at elevated temperatures were chosen. The cellulose films were prepared by spin coating a soluble cellulose derivative, trimethylsilyl cellulose, onto solid substrates followed by conversion to cellulose by HCl vapor. For the highest investigated humidity levels (97%), the layer thickness increased by ca. 40% corresponding to the incorporation of 3.6 molecules of water per anhydroglucose unit (AGU), independent of the cellulose source used. The aforementioned treatments affected this ratio significantly with drying being the most notable procedure (2.0 and 2.6 molecules per AGU). The alterations were investigated in real time with X-ray reflectivity and quartz crystal microbalance with dissipation, equipped with a humidity module to obtain information about changes in the thickness, roughness, and electron density of the films and qualitatively confirmed using grazing incidence small angle X-ray scattering measurements using synchrotron irradiation.


Assuntos
Celulose , Água , Celulose/química , Umidade , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de Quartzo , Água/química
8.
Biomed Pharmacother ; 147: 112648, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051863

RESUMO

J147 is a novel drug candidate developed to treat neurological dysfunction. Numerous studies have demonstrated the beneficial effects of J147 in cellular and animal models of disease which has led to the transitioning of the compound into human clinical trials. However, no biomarkers for its target engagement have been identified. Here, we determined if specific metabolites in the plasma could be indicative of J147's activity in vivo. Plasma lipidomics data from three independent rodent studies were assessed along with liver lipidomics data from one of the studies. J147 consistently reduced plasma free fatty acid (FFA) levels across the independent studies. Decreased FFA levels were also found in the livers of J147-treated mice that correlated well with those in the plasma. These changes in the liver were associated with activation of the AMP-activated protein kinase/acetyl-CoA carboxylase 1 signaling pathway. A reduction in FFA levels by J147 was confirmed in HepG2 cells, where activation of the AMPK/ACC1 pathway was seen along with increases in acetyl-CoA and ATP levels which correlated with enhanced cellular bioenergetics. Our data show that J147 targets liver cells to activate the AMPK/ACC1 signaling pathway and preserve energy at the expense of inhibiting FFA synthesis.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Acetiltransferases/efeitos dos fármacos , Curcumina/análogos & derivados , Ácidos Graxos não Esterificados/biossíntese , Fígado/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Curcumina/farmacologia , Feminino , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
9.
MAbs ; 13(1): 1950264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34325617

RESUMO

Epidermal growth factor receptor (EGFR)-targeted cancer therapy such as anti-EGFR monoclonal antibodies and tyrosine kinase inhibitors have demonstrated clinical efficacy. However, there remains a medical need addressing limitations of these therapies, which include a narrow therapeutic window mainly due to skin and organ toxicity, and primary and secondary resistance mechanisms of the EGFR-signaling cascade (e.g., RAS-mutated colorectal cancer). Using the redirected optimized cell killing (ROCK®) antibody platform, we have developed AFM24, a novel bispecific, IgG1-scFv fusion antibody targeting CD16A on innate immune cells, and EGFR on tumor cells. We herein demonstrate binding of AFM24 to CD16A on natural killer (NK) cells and macrophages with KD values in the low nanomolar range and to various EGFR-expressing tumor cells. AFM24 was highly potent and effective for antibody-dependent cell-mediated cytotoxicity via NK cells, and also mediated antibody-dependent cellular phagocytosis via macrophages in vitro. Importantly, AFM24 was effective toward a variety of EGFR-expressing tumor cells, regardless of EGFR expression level and KRAS/BRAF mutational status. In vivo, AFM24 was well tolerated up to the highest dose (75 mg/kg) when administered to cynomolgus monkeys once weekly for 28 days. Notably, skin and other toxicities were not observed. A transient elevation of interleukin-6 levels was detected at all dose levels, 2-4 hours post-dose, which returned to baseline levels after 24 hours. These results emphasize the promise of bispecific innate cell engagers as an alternative cancer therapy and demonstrate the potential for AFM24 to effectively target tumors expressing varying levels of EGFR, regardless of their mutational status.Abbreviations: ADA: antidrug antibody; ADCC: antibody-dependent cell-mediated cytotoxicity; ADCP: antibody-dependent cellular phagocytosis; AUC: area under the curve; CAR: chimeric-antigen receptor; CD: Cluster of differentiation; CRC :colorectal cancer; ECD: extracellular domain; EGF: epidermal growth factorEGFR epidermal growth factor receptor; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; Fc: fragment, crystallizableFv variable fragment; HNSCC: head and neck squamous carcinomaIL interleukinm; Ab monoclonal antibody; MOA: mechanism of action; NK :natural killer; NSCLC: non-small cell lung cancer; PBMC: peripheral blood mononuclear cell; PBS: phosphate-buffered saline; PD: pharmacodynamic; ROCK: redirected optimized cell killing; RSV: respiratory syncytial virus; SABC: specific antibody binding capacity; SD: standard deviation; TAM: tumor-associated macrophage; TKI: tyrosine kinase inhibitor; WT: wildtype.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos Imunológicos , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Proteínas de Neoplasias , Neoplasias/tratamento farmacológico , Fagocitose/efeitos dos fármacos , Receptores de IgG , Células A549 , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Células HCT116 , Células HT29 , Humanos , Células Matadoras Naturais/patologia , Células MCF-7 , Macaca fascicularis , Macrófagos/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Receptores de IgG/antagonistas & inibidores , Receptores de IgG/imunologia
10.
Mol Microbiol ; 116(3): 794-807, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34121254

RESUMO

Type IV secretion of effector proteins is an important principle for interaction of human pathogens with their target cells. The corresponding secretion systems may transport a multitude of effector proteins that have to be deployed in the respective spatiotemporal context, or only a single translocated protein, as in the case of the CagA effector protein produced by the human gastric pathogen Helicobacter pylori. For a more detailed analysis of the kinetics and mode of action of CagA type IV secretion by H. pylori, we describe here, a novel, highly sensitive split luciferase-based translocation reporter which can be easily adapted to different end-point or real-time measurements. Using this reporter, we showed that H. pylori cells are able to rapidly inject a limited amount of their CagA supply into cultured gastric epithelial cells. We have further employed the reporter system to address the question whether CagA has to be unfolded prior to translocation by the type IV secretion system. We showed that protein domains co-translocated with CagA as protein fusions are more readily tolerated as substrates than in other secretion systems, but also provide evidence that unfolding of effector proteins is a prerequisite for their transport.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Helicobacter pylori/metabolismo , Transporte Proteico , Desdobramento de Proteína , Sistemas de Secreção Tipo IV/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Cinética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estômago/microbiologia
11.
Mol Microbiol ; 116(3): 841-860, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34164854

RESUMO

Helicobacter pylori displays a worldwide infection rate of about 50%. The Gram-negative bacterium is the main reason for gastric cancer and other severe diseases. Despite considerable knowledge about the metabolic inventory of H. pylori, carbon fluxes through the citrate cycle (TCA cycle) remained enigmatic. In this study, different 13 C-labeled substrates were supplied as carbon sources to H. pylori during microaerophilic growth in a complex medium. After growth, 13 C-excess and 13 C-distribution were determined in multiple metabolites using GC-MS analysis. [U-13 C6 ]Glucose was efficiently converted into glyceraldehyde but only less into TCA cycle-related metabolites. In contrast, [U-13 C5 ]glutamate, [U-13 C4 ]succinate, and [U-13 C4 ]aspartate were incorporated at high levels into intermediates of the TCA cycle. The comparative analysis of the 13 C-distributions indicated an adaptive TCA cycle fully operating in the closed oxidative direction with rapid equilibrium fluxes between oxaloacetate-succinate and α-ketoglutarate-citrate. 13 C-Profiles of the four-carbon intermediates in the TCA cycle, especially of malate, together with the observation of an isocitrate lyase activity by in vitro assays, suggested carbon fluxes via a glyoxylate bypass. In conjunction with the lack of enzymes for anaplerotic CO2 fixation, the glyoxylate bypass could be relevant to fill up the TCA cycle with carbon atoms derived from acetyl-CoA.


Assuntos
Aminoácidos/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Ácido Cítrico/metabolismo , Glucose/metabolismo , Helicobacter pylori/metabolismo , Acetilcoenzima A/metabolismo , Ácido Aspártico/metabolismo , Metabolismo dos Carboidratos , Ciclo do Ácido Cítrico , Ácido Glutâmico/metabolismo , Gliceraldeído/metabolismo , Glioxilatos/metabolismo , Infecções por Helicobacter/microbiologia , Humanos , Malatos/metabolismo , Redes e Vias Metabólicas , Ácido Succínico/metabolismo
13.
Clin Cancer Res ; 27(13): 3744-3756, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33986022

RESUMO

PURPOSE: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.


Assuntos
Anticorpos Biespecíficos , Imunoterapia , Células Matadoras Naturais , Leucemia , Linfoma , Humanos , Anticorpos Biespecíficos/uso terapêutico , Sangue/efeitos dos fármacos , Sangue/imunologia , Células Cultivadas , Terapia Combinada , Citocinas/farmacologia , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/imunologia , Imunoterapia/métodos , Antígeno Ki-1/imunologia , Células Matadoras Naturais/imunologia , Leucemia/terapia , Linfoma/terapia , Receptores de IgG/imunologia
14.
Surg Endosc ; 35(3): 1230-1237, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32166548

RESUMO

BACKGROUND: To clarify the optimum mesh-tack ratio MTR (mesh area in cm2 divided by the number of fixation tacks) in laparoscopic ventral and incisional hernia repair, we compared IPOM Plus procedures with more intensive mesh fixation to those with standard mesh fixation. METHODS: In a retrospective cohort study, 84 patients (mean hernia width 6.6 ± 4.4 cm) intraoperatively received an intensive mesh fixation I-IPOM Plus with MTR ≤ 4:1 (e.g. ,150 cm2 mesh fixed by 50 tacks) and 74 patients (mean hernia width 6.7 ± 3.4 cm) received a standard mesh fixation S-IPOM Plus with MTR > 4:1 (e.g., 150 cm2 mesh fixed by 30 tacks) at a community hospital between 2014 and 2017. Outcomes in recurrence rates, immediate and chronic postoperative pain, as well as long-term functionality of the abdominal wall were then evaluated. RESULTS: After a mean follow-up time of 34 months, a 2.3% recurrence rate in I-IPOM Plus patients and a 13.5% recurrence rate in S-IPOM Plus patients were recorded (p = 0.018). The recurrence was associated with large hernia > 10 cm (OR 3.7, 95% CI 1.3-5.4) and MTR > 5 (OR 2.4, 95% CI 1.1-3.8) in the multivariate analysis. There was a positive correlation between immediate postoperative pain intensity measured on day 7 and number of fixation tacks placed (I-IPOM Plus: mean 4.5 ± 2.5 VAS versus S-IPOM Plus: mean 2.7 ± 2.0 VAS, p = 0.001). However, there were no outcome differences in terms of length of immediate postoperative pain experience, sick leave duration, chronic pain rate and long-term abdominal wall functionality between these two groups. CONCLUSION: For ventral and incisional hernia patients with multiple recurrence risk factors, a mesh-tack ratio MTR ≤ 4:1 should be applied in laparoscopic IPOM Plus procedures.


Assuntos
Hérnia Ventral/cirurgia , Herniorrafia/métodos , Laparoscopia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
15.
Elife ; 92020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33169665

RESUMO

Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or 'viroporins', contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR). This step-change in understanding not only revealed a second biological function for the p7 viroporin from hepatitis C virus (HCV) during virus entry, but also enabled the synthesis of a labelled tool compound that retained biological activity. Hence, p7 inhibitors (p7i) represent a unique class of HCV antiviral targeting both the spread and establishment of infection, as well as a precedent for future viroporin-targeted drug discovery.


Assuntos
Antivirais/farmacologia , Hepacivirus/metabolismo , Proteínas Virais/antagonistas & inibidores , Animais , Antivirais/química , Biomarcadores , Linhagem Celular , Cães , Descoberta de Drogas , Genótipo , Hepacivirus/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
16.
Front Microbiol ; 11: 1592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754140

RESUMO

The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.

17.
Sci Rep ; 10(1): 11409, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651394

RESUMO

Helicobacter pylori is a gram-negative, spiral-shaped bacterial pathogen and the causative agent for gastritis, peptic ulcer disease and classified as a WHO class I carcinogen. While the prevalence of H. pylori infections in Africa is among the highest in the world, the incidence of gastric cancer is comparably low. Little is known about other symptoms related to the H. pylori infection in Africa and the association with certain phenotypes of bacterial virulence. We established a network of study sites in Nigeria (NG) and South Africa (ZA) to gain an overview on the epidemiological situation. In total 220 isolates from 114 patients were analyzed and 118 different patient isolates examined for the presence of the virulence factors cagA, vacA, dupA, their phylogenetic origin and their resistance against the commonly used antibiotics amoxicillin, clarithromycin, metronidazole and tetracycline. We report that H. pylori isolates from Nigeria and South Africa differ significantly in their phylogenetic profiles and in their expression of virulence factors. VacA mosaicism is intensive, resulting in m1-m2 vacA chimeras and frequent s1m1 and s1m2 vacA subtypes in hpAfrica2 strains. Gastric lesions were diagnosed more frequent in Nigerian versus South African patients and H. pylori isolates that are resistant against one or multiple antibiotics occur frequently in both countries.


Assuntos
Helicobacter pylori , Gastropatias/epidemiologia , Gastropatias/microbiologia , Fatores de Virulência/metabolismo , Testes Respiratórios , Cefalosporinas , Endoscopia , Evolução Molecular , Feminino , Geografia , Humanos , Masculino , Testes de Sensibilidade Microbiana , Nigéria/epidemiologia , Fenótipo , Filogenia , Reação em Cadeia da Polimerase , Prevalência , África do Sul/epidemiologia , Inquéritos e Questionários , Ureia , Virulência
18.
Alzheimers Res Ther ; 12(1): 75, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560738

RESUMO

BACKGROUND: All cells accumulate insoluble protein aggregates throughout their lifespan. While many studies have characterized the canonical disease-associated protein aggregates, such as those associated with amyloid plaques, additional, undefined proteins aggregate in the brain and may be directly associated with disease and lifespan. METHODS: A proteomics approach was used to identify a large subset of insoluble proteins in the mild cognitively impaired (MCI) and Alzheimer's disease (AD) human brain. Cortical samples from control, MCI, and AD patients were separated into detergent-soluble and detergent-insoluble fractions, and high-resolution LC/MS/MS technology was used to determine which proteins became more insoluble in the disease state. Bioinformatics analyses were used to determine if the alteration of protein aggregation between AD and control patients was associated with any specific biological process. Western blots were used to validate the proteomics data and to assess the levels of secondary protein modifications in MCI and AD. RESULTS: There was a stage-dependent increase in detergent-insoluble proteins, with more extreme changes occurring in the AD cohort. Glycolysis was the most significantly overrepresented gene ontology biological process associated with the alteration of protein aggregation between AD and control patients. It was further shown that many low molecular weight proteins that were enriched in the AD brain were also highly aggregated, migrating on SDS-PAGE far above their predicted molecular masses. Glucose-6-phosphate isomerase, ubiquitin carboxyl-terminal hydrolase isoenzyme L1 (UCHL1/PARK5), and the DNA damage repair enzyme KU70 were among the top insoluble proteins identified by proteomics and validated by Western blot to be increased in the insoluble fractions of both MCI and AD brain samples. CONCLUSIONS: Diverse proteins became more detergent-insoluble in the brains of both MCI and AD patients compared to age-matched controls, suggesting that multiple proteins aggregate in these diseases, likely posing a direct toxic insult to neurons. Furthermore, detergent-insoluble proteins included those with important biological activities for critical cellular processes such as energetics, proteolysis, and DNA damage repair. Thus, reduced protein solubility likely promotes aggregation and limits functionality, reducing the efficiency of multiple aspects of cell physiology. Pharmaceutical interventions that increase autophagy may provide a useful therapeutic treatment to combat protein aggregation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Encéfalo , Humanos , Placa Amiloide , Espectrometria de Massas em Tandem
20.
Microorganisms ; 8(4)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218315

RESUMO

Attachment to the host gastric mucosa is a key step in Helicobacter pylori infection. Recently, a novel adhesin, HopQ, was shown to bind distinct host CEACAM proteins-an interaction that was found to be essential for the translocation of CagA, a key virulence factor of H. pylori. The HopQ-CEACAM1 co-crystal structure revealed a binding mode dependent on loops in HopQ that are clasped by disulfide bonds. In this study, we investigated the importance of these cysteine residues for CEACAM1 engagement by H. pylori. We observed a loss of CEACAM1 binding and CagA translocation upon disruption of the disulfide bond in loop CL1 (connecting C103 to C132 in HopQ). Deletion of the Dsb-like oxidoreductase HP0231 did not affect cell surface expression of HopQ or alter the interaction of H. pylori with target cells. Although HP0231 deletion was previously described to impede CagA translocation, our results indicate that this occurs through a HopQ-independent mechanism. Together, our results open up new avenues to therapeutically target the HopQ-CEACAM1 interaction and reduce the burden of pathogenic H. pylori.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...